

LECTURE - 03 CHEMICAL KINETICS

Today's Goal

Calculation of order of complex reaction **First order reaction**

CALCULATION OF ORDER OF THE COMPLEX REACTION

Q. For the following reaction $2AB + B_2 \rightarrow 2AB_2$ The mechanism is $Step 1: AB + B_2 \rightleftharpoons AB_3$ (Fast) $Step 2: AB_3 + AB \rightarrow 2AB_2$ (Slow) Find Order :

CALCULATION OF ORDER OF THE COMPLEX REACTION

Q. For the following reaction $A_2 + B_2 \rightarrow 2AB$ The mechanism is Step 1: $A_2 \rightleftharpoons A + A$ (Fast) Step 2: $A + B_2 \rightarrow AB + B$ (Slow) Step 3: $A + B \rightarrow AB$ (Fast) The overall Order of the reaction is :

The rate law of the reaction, $xA + yB \rightarrow mP + nQ$ is : Rate = K $[A]^{c}[B]^{d}$ what is the total order of the reaction?

,

Which one of the following statement for the order of a reaction is incorrect?

Order can be determined only experimentally

Order is not influenced by stoichiometric coefficient of the reaction

Order of a reaction is sum of power to the concentration terms of reactants to express the rate of reaction

Order of reaction is always whole number

The rate of the reaction $2N_2O_5 \longrightarrow 4NO_2 + O_2$ can be written in three ways: $\frac{-d[N_2O_5]}{dt} = K[N_2O_5]; \qquad \frac{d[NO_2]}{dt} = K'[N_2O_5]; \qquad \frac{d[O_2]}{dt} = K''[N_2O_5]$ The relationship between K and K' and between K and K" are:

K' = 2K; K'' = K/2

Q For a reaction the initial rate Is given as : $R_0 = K [A]_0^2 [B]_0$, by what factor, the initial rate of reaction will increase if initial concentration of A is taken 1.5 times and of B is tripled ?

Reaction A \rightarrow B follows second order kinetics. Doubling the concentration of A will increase the rate of formation of B by a factor of

Integrated rate Expression in terms of Concentration

Integrated rate Expression in terms of moles

Half Life or $t_{50\%}$ or $t_{1/2}$

Graphs

THANK YOU !!

Homework

ALL DPPs OF LAST CHAPTER REVISE FORMULA OF LAST CHAPTER DPP Of this Lecture

